High-voltage: 3.3kV & 6.5kV IGBT3 Modules

Chip generations of 3300V IGBT modules

		standard 2nd gen.	low loss 2nd gen.	Trench+FS 3rd gen.	Trench+FS 3rd gen.	
		KF2C	KL2C	HL3	HE3	
IGBT optimized regarding>		NPT low switching losses	NPT with field stop low saturation voltage high DC stability	NPT Trench with field stop low saturation voltage high DC stability	NPT Trench with field stop low switching losses high DC stability	
V _{cesat} (V)	25°C	3.4	3.0	2.15	2.7	
	125°C	4.3	3.7	2.5	2.95	
E _{on} (mJ) 125°C		2200	3150	2550	2200	
E _{off} (mJ) 125°C		1550	1900	2200	1550	
Diode		Emcon	Emcon with field stop	Emcon 3 field stop	Emcon 3 field stop	
V _f (V)	25°C	2.8	2.6	2.05	2.5	
	125°C	2.8	2.55	2.0	2.5	
E _{rec} (mJ)	125°C	1550	1650	2650	1350	
switching fre	ng frequency 1000Hz 500Hz 500Hz 500Hz 200		2000Hz			
housing insulation		IHM A 6kV	IHM A 6kV	IHM B 6kV	IHM B 6kV	
DC stability 100fit @		1800V	2150V	2100V	2100V	
Tvjmax		125°C	125°C	150°C	150°C	

for better comparability all Vcesat, Vf and switching energies are rated @ 1200A

optimization regarding two fields of applications:

→ "fast" version with low E_{on} + E_{off}
high switching frequencies up to 2 kHz, L_s < 100nH required
→ "soft" version with low V_{cesat} and V_f
low switching frequencies, high stray inductances up to 350nH
Cosmic radiation robustness

 \rightarrow V_{CED} (T_{vi} = 25° C, 100 fit) = 2100V

higher current rating; enlarged diode area for lower R_{thic}

Diversity of requirements: two optimized versions of 3.3kV chips for different fields of applications

Comparison turn-on behavior KF2C-KL2C-HL3-HE3

Author

Comparison turn-off behavior KF2C-KL2C-HL3-HE3

Comparison recovery behavior KF2C-KL2C-HL3-HE3

left: KF2C right: KL2C @1800V / 1200A

left: HL3 right: HE3 @1800V / 1500A

Page 7

150° C SC operation

Overcurrent turn-off at $5xI_{nom}$, $T_{vj}=150^{\circ}C$ and $V_{DC}=2500V$ (V_{GE} : 5V/div, V_{CE} : 500V/div, I_C : 1200A/div)

Cosmic radiation

The DC voltage to achieve a neglectable failure rate of 100 fit has been raised from 1800V for the 1200A 2nd gen. device to 2100V for the 1500A 3rd gen. device. Altitude dependent acceleration factors \rightarrow

Neutrons at high energy levels generated by cosmic radiation could produce highly localized charged plasmas which in turn could trigger a destructive discharge in the semiconductor due to a massive charge multiplication.

IPOSIM comparison of current carrying capability

Compared devices:

- FZ1200R33KF2C (2nd gen. NPT)
- FZ1500R33HL3 (3rd gen. field stop plus trench in IHM-B housing, soft)
- FZ1500R33HE3 (3rd gen. field stop plus trench in IHM-B housing, fast)

Alle simulations are done with comparable operation conditions: 1800V / 50Hz / m=1 / f_{sw} =200...1500Hz / T_{jmax} =125° C / cosphi=1 (IGBT) or cosphi=-1 (Diode) with water cooling: $T_a = 60°$ C / $R_{thhs} = 6$ K/kW The max reachable currents for T_{vjmax} =125° C are calculated in the following

IPOSIM simulation results for T_{vjmax} =125° C

FZ1500R33HL3: Field of application: up to 500Hz even with high stray inductances. Clearly superior to all other devices in this frequency range. Improvement in the range 200...500Hz: +22...45%

FZ1500R33HE3: Field of application: above 500Hz. Clearly superior to all other devices in this frequency range. Improvement in the range 500...1500Hz: +15...21%

An <u>extensive increase of current yield</u> can be achieved by use of the new IGBT3 technology !

IPOSIM simulation with T_{vjmax} =150°C for IGBT3

FZ1500R33HL3: overall improvement (due to chip technology and increased max. junction temperature) in the range 200...500Hz: +56...80%

FZ1500R33HE3: overall improvement (due to chip technology and increased max. junction temperature) in the range 500...1500Hz: +51...52%

Raising the allowed operation temperature from 125°C to 150°C for IHM B housings will bring an additional <u>enormous increase of</u> <u>dissipateable power</u> !

Overview 6500V chip generations

Infinoon	standard 2nd gen.	Trench + FS KE3		
Infineon	KF2			neon
	FZ600R65KF2	FZ750R65KE3		
data sheet	08.02.2008 Rev 3.0	26.9.08 Rev 2.0		
		@ 600A	@ 750A]
Sperrspannung	5800 / 6300 / 6500V	6000 / 6000 / 6500 / 6500		T I
Tvj,op	-40 125°C	-50 125°C		
]
Vcesat 25°C [V]	4,3	2,75	3]
Vcesat 125°C [V]	5,3	3,3	3,7	
				I
Eon 125°C [mJ]	5900	5200	6500]
Eoff 125°C [mJ]	3500	3360	4200]
Σ Eon+Eoff 125°C [mJ]	9400	8560	10700	1
				1
Vf 25°C [V]	3,8	2,75	3	1
Vf 125°C [V]	3,9	2,65	2,95	1
			-	1
Erec [mJ] 25°C	660	1120	1400	1
Erec [mJ] 125°C	1600	2400	3000	1
			-	1
l ² t [kA ² s]	165	470		1
DC stability 100fit @ [V]	3700	3800		1
				1
Rthjc IGBT [K/kW]	11	8,7		1
Rthjc Diode [K/kW]	21	18,5		1
Chopper / 600A / 125°C	1590	990	1110	-0
400Hz / duty cycle=0,5	3760	3424	4280	
Verluste Pv =	5350	4414	5390	Ĩ
Temperaturanstieg ∆T =	58,9	38,4	46,9	Page 1

The KF1 chip generation is now in the market and in mass production for more than four years. Since the customers are increasingly confident in the robustness of the corresponding devices, we see a tendency to boost the current and voltage utilization in new high power application designs. As a consequence,

Infineon decided to apply latest technical expertises and expand the overall robustness of the IGBT device by a chip modification named "KF2".

Robustness in this context is expressed by the distance between points of destruction and test or operation conditions. It can be visualized by a so called robustness map shown in the following diagram.

For improving the safety margins KF2 should be used for new designs.

Robustness map KF1 and KF2

Turn-on comparison at Inom and 125°C Improved device (KF2): "2184 Improv" standard device (KF1): "IM60077_1" and "IM60076_1"

Diode recovery comparison KF1 vs. KF2

Diode recovery comparison at Inom and 125°C

Improved modules KF2 and standard device KF1 show no significant differences in their turn-on and recovery behavior at identical Rgon.

Turn-off comparison KF1 vs. KF2

Turn-off comparison at Inom and 125°C green: standard device (KF1) at nominal Rgoff = 25Ω red: improved device (KF2) at Rgoff = 25Ω blue: improved device (KF2) at new nominal Rgoff = 30Ω

By increasing the Rooff from 25Ω to 30Ω the turn-off behavior of the KF2 device can be fully adapted to the behavior of the standard KF1 device. for internal use only Page 20

Author

Benefits of new IGBT³ chip generation compared to IGBT³

- Storage temperature extended from -40° C down to -55° C
- Cosmic radiation robustness V_{CE D}(T_{vj} = 25° C, 100 fit) raised from 3700V to 3800V
- Nominal current rating raised from 600A to 750A
- Drastical reduction of V_{cesat} and V_f due to Trench and field-stop technology
- Drastical increase of i²t-capability from 165 to 470kA²s
- enlarged diode area for lower R_{thjc}; well suited for the needs of regenerative operation in traction applications

6.5kV IGBT³ V_{cesat} and V_{f}

Significant reduction of conduction losses by

- increase of active area (optimization of edge structure)
- optimization of charge carrier distribution
 - $> 30\% V_{CESat}$ reduction of IGBT³ against IGBT²
 - > 20% V_F reduction of EC³ diode against 2nd gen.

Author

6.5kV IGBT³ switching behavior

Turn-off behavior of 750A module at L_s =280nH, V_{DC} =4.5kV

Softness and robustness verified under worst-case conditions

6.5kV IGBT³ switching behavior

6.5kV IGBT³ short circuit behavior

Second s

Author

6.5kV IGBT³ clamping of over-current

- repetitive overcurrent turn-off with self-clamping
- turn-off current 1600A *) for 500A module (>3xl_N)

even with high stray inductance L_s of 800nH

*) for regular operation: max. 2xl_n allowed

6.5kV EC³ diode I²t

Considerable increase in surge current capability for new 6.5 kV EC³ diode by

larger active chip area

Iower conduction losses

6.5kV EC³ diode robustness

Diode turn-off 250A (1 of 3 systems)

🛸 single pulse

- P_{max} 4.5 MW for a 250A system reached
- P_{max} of clearly above 10 MW for 750A module expected
- continuous operation
 - considerable expansion of specified SOA possible

Simulation of achievable inverter currents

simulated max. inverter currents for a 6.5 kV 190x140 base plate module

Cosmic radiation

The DC voltage to achieve a neglectable failure rate of 100 fit has been raised from 3700V for the 600A 2nd generation device to 3800V for the 750A 3rd generation device.

Altitude dependent acceleration factors \rightarrow

Neutrons at high energy levels generated by cosmic radiation could produce highly localized charged plasmas which in turn could trigger a destructive discharge in the semiconductor due to a massive charge multiplication.

6.5kV IHV IGBT-Modules KF2

* Time Schedule not fixed yet!

6.5kV IHV IGBT-Modules KF2 with -55°C / -50°C

* Time Schedule not fixed yet!

6.5kV IHV IGBT-Modules with IGBT³: KE3

* Time Schedule not fixed yet!

* Time schedule not fixed yet!

* Time Schedule not fixed yet!

* Time schedule not fixed yet!

6.5kV IGBT³ plus EC³ summary

static losses reduced by 30-40% (@ 600A)

- Solution State Stat
- Some set the set of the set o
- Robustness improvement IGBT: final test with 3*Inom far above RBSOA possible
- Robustness improvement Diode:

 P_{max} raised from 1,8 to 3MW, i²t increased from 165 to 435A²s

cosmic radiation robustness 100 fit value raised from 3700V to 3800V

- minimum operation temperature T_{vjop} lowered to -50°C
- minimum storage temperature T_{stq} lowered to -55°C
- design support given by IPOSIM dimensioning program

