Choice for "Green" Energy: PrimePACK™

-2009-06 Seminar

Never stop thinking

Green energy

Wind power

Wind converter

Solar energy

- Energy conversion
- ¬ Circuit Topology
- Power device IGBT, MOSFET, SCR, Diode

Solar converter

Double Fed Induction Generator (DFIG)

Typical converter power:

400 – 2000 kW

- **Typical topology**:
- B6I+B6I Converter and inverter
- Overvoltage protection crow-bar
- Opt. brake chopper
- Advantages:
- Power converter only for 30% generated power
- Line inductance is only $3\% \sim 4.5\%$.

PrimePACK

IHM

2009-7-3 For internal use only Copyright © Infineon Technologies 2009. All rights reserved.

Generator with 4Q full converter

Typical converter power:

up to 5 MW

- **Typical topology**:
- ¬ B6I + B6I Converter and inverter
- ¬ Brake chopper
- ¬ Opt crow-bar
- Advantages:
- Simple AC induction generator
- Generated power and voltage increase with the speed.

Synchronous generator with 2Q full converter

Typical converter power:

300 kW

- **Typical topology**:
- B6U or B6C rectifier, B6I inverter
- ¬ Brake chopper
- ¬ Opt. boost converter
- Advantages:
- ¬ Simple Generator Side Converter and Control
- ¬ No min./max. Turbine Speed Limits

Summary of different wind turbine

Generator type	Generator output voltage	Generator frequency (mechanical)	DC-link voltage	output voltage turbine before trans.	Switching frequency	Reverse Voltage IGBT
Asynchronous (danish concept)	3x690V	50 Hz	n.a.	3x690V	n.a.	n.a.
Double feed Induction geneartor (DFIG)	3x690V	variable	1100V	3x690V	e.g. 2,25 kHz grid and rotor sided	1700V
Synchronous	3x500V 3x690V 3x960V	variable	650V 1100V 1800V	3x500V 3x690V 3x960V	3-4kHz 3-4kHz 0,5-1kHz	1200V 1700V 3,3kV

Grid-Tie (Line-Connected) System

- □ Pure Sine Wave output (EN60555-2, DIN VDE 0875 T1)
- Direct feed into Grid
- Without Battery
- Cannot provide power to load independently

PV INVERTER

Voltage. Current & Power

Voltage	Effect of array voltage	Inverter mode
Voc <240V dc	Inverter not operating	Off-line
VMPP<240V dc,	Voltage shifts to	On-line
Voc > 240V dc	240V dc, the array is not at its max. power point.	(Low power)
VMPP	Max. harvest of solar	On-line
240V~550V dc	energy	(MPPT windows)
VMPP 550V~	doesn't allow max.	On-line
600V dC	narvest	(Power rating)
VMPP >600V	Inverters stops	Off-line
	shut down.	(may be damaged)

PY module | MF Roler, MPSHIP Solury, Manufacturer

Xantrex -500E

Electrical Specifications	
Nominal power rating (AC)	500 kW
Nominal AC voltage	215.1
Normal AC Voltage	
Nominal AC frequency	50 Hz (optional 60 Hz)
Line power factor	> 0,99 above 20% rated power
AC current distorsion	< 3% THD at rated power
Max AC line current	920 A
Stand-by tare losses	< 100 W
Night consumption	< 100 W
Min DC voltage for feed-in	450 V
Suggested PV power	560 kWp
Max DC current	1120A
Max open circuit voltage	880 V
Power Tracking window range	450 V - 800 V
Max efficiency	98,10%
European efficiency	97,30%
General Specifications	Low losses
Ambient temperature range	-10° - 45°C
Enclosure environmental rating	IF21
Enclosure	Rittal TS Series
Weight	1770 kg
Dimensions (H x W x D)	211,2 x 240,6 x 60,5 cm
Altitude	up to 1500 m without de-rating
Relative humidity	0 - 95% non-condensing

Requirement of IGBT module -> Voltage rating

Calculation of required DC-Link Voltage

Requirements to IGBT modules -> Reliability

- □ Lifetime and reliability: normally 20 years, zero failure
- Requirement to IGBT modules:
- Load cycle capability (power and thermal cycling capability)
- ¬ Different temperature swings depending on different converter topologies

Alternate current frequency of LSC: 50Hz or 60Hz.

Alternate current frequency of MSC: 0..20Hz.

Assuming the same power dissipation:

1. Temperature swing in the MSC

(IGBTs+diodes) is much higher.

2. As frequencies smaller 5Hz, the chip temperature follows the current fairly exactly.

typical DFIG system

Requirements to IGBT modules -> Power capacity

The different temperature swings of a typical DFIG in the semiconductors are shown.

ικĩ

30

20

10

0

60

120

LSC (fundamental oscillation 50Hz): Temperature swing in the IGBT Temperature swing in the diode MSC (fundamental oscillation 1Hz): Temperature swing in the IGBT Temperature swing in the diode

300

360

[Grad el.]

ΔTi

180

240

Machine side converter (MSC) needs to be specifically designed/oversized to meet the required power cycling and thermal cycling capability for a defined life time 20 years.

Requirements to IGBT modules -> LVRT

Requirements to IGBT modules -> Electrical

Due to high humidity in several countries and also additional high salt content in the air, the **clearance and creepage distances** of the modules are quite important and or splash water protected cabinet has to be used. Otherwise flash over occurs on the modules.

In case protected cabinets are not used, IHM and PrimePACK[™] modules give the customer highest margins and are best solutions, especially for offshore turbines.

Summary – Key requirements to IGBT modules for wind/solar ene

- □ 20 years design-lifetime for power semiconductors
 - ¬ calculation based on load cycles given by customers based on their specific power conversion system.
- Clearance and creepage distances higher than for industry inverters needed in case no splash water protected cabinet is used.
 - \neg for high humidity and salt content in the air
- Low losses
- Low thermal resistances
- Availability of DC-link voltage
- ¬ Package, internal stray inductance.
- RBSOA

Unique Selling Proposition IFX PrimePACK™ IGBT modules for windmill applications

- Highest creepage and clearance distance
- □ Housing material with CTI>400
- Designed for over voltage class 2
- Very low inductive module design
- Optimized chip position for better heat spreading.
- Complete portfolio available for 1700V.
- Easy for paralleling of several modules
- Optimized driver board design possible (Evaluation board available).

What is PrimePACK™?

Modular Design of Package Footprint

- □ PrimePACKTM2 (89 x 172mm): up to 900A & 650A
- □ PrimePACK[™]3 (89 x 250mm): up to 1400A & 1000A

How is PrimePACK[™]?

PrimePACK[™]2: Internal Layout

Internal Bus Bar

- Low Module Stray Inductance*
- Welding instead of soldering increasing mechanical robustness
- Optimized Cost

* PrimePACK[™]2: ~ 18 nH * PrimePACK[™]3: ~ 10 nH

How is PrimePACK™?

Result in: Low Thermal Resistance RthCH (Case-Heatsink)

How is PrimePACK[™]

- High Creepance & Clearance Distance for Highly Contaminated Environment
- Meets Safety Standard: up to 3300V Impulse Voltage (Over Voltage Class 2, Pollution Degree 3)

How is PrimePACK™

- **IGBT4** 2nd Generation of Trench-Fieldstop Technology
- Three Versions of IGBT4 optimized for different application requirements
- IGBT4 High Power Chip (P4) → Softer than E3
- IGBT4 Medium Power Chip (E4) → Faster than E3; As soft as E3
- IGBT4 Low Power Chip (T4) → Faster than T3; same softness as T3
- Increased junction temperature Tvjop=150°C / Tvjmax=175°C
- 10µS Short Circuit Robustness at 150°C
- PrimePACK[™] use P4 (IP4) and E4 (IE4)

How is PrimePACK[™] ?

PrimePACK[™] use:

- Improved Bonding Technology plus IGBT4 (Tvjop = 150°C)
 - → Same Power Cycling (PC) Capability @ Tjmax = 150°C
 - → Nearly *Doubled* PC Capability @ Tjmax = 125°C
- Rugged Al₂O₃ Substrate plus Cu Baseplate
 - → Improved Thermal Cycling (TC) Capability

PrimePACK[™] reliability in Doubly-fed system

4th Gen IGBT / Diode (Tj up to 150C)

- Optimized bond parameters
- Improved chip metallization

PrimePACK[™] reliability in Doubly-fed system

Packaging improvement on thermal cycling

- improved AI2O3 substrate is applied (traction)
- spacer between base plate and substrate
- Optimizing soldering process
- applying ultra-sonic welding technology to joint power terminal and substrate

IHM vs. PrimePACK[™] in 1.5MW doubly-fed system

FF1200R17KE3

FF1000R17IE4

	1Hz point	10Hz point	15Hz point
Output voltage	10V	220V	320V
Output current	240A	580A	640A
Output frequency	1Hz	10Hz	15Hz
Power factor	-1	-0.8	-0.6
DC link voltage	1000V	1000V	1000V
Switching	3kHz	3kHz	3kHz
frequency			

Ripple & Max.Tvj.op

Thermal calculation is done for rotor side inverter base on Infineon power module simulation tool "IPOSIM", assuming both modules have same Rthha (0.056K/W).

Diode die is with higher junction temperature and big ripple

Power cycling comparison

Check from PC curves and make a derating concerning maximum junction temperature. The power cycling numbers are listed as below:

	FF1200R17KE3	FF1000R17IE4]
1Hz point	8.5E+06	9.0E+08	
10Hz point	3.0E+08	5.1E+09	
15Hz point	1.0E+09	1.6E+10	
Rthha=	0.056K/W	0.056K/W	
	FF1200R17KE3	FF1000R17IE4	Deach Timey 1500
1Hz point	8.5E+06	3.00E+08	Reach IJmax 1500
10Hz point	3.0E+08	8.00E+08	
15Hz point	1.0E+09	3.00E+09	
Rthha=	0.056K/W	0.155K/W	

Examples

1/2B2I or B6I

B2I, B6I or B6I+B6I 1×1700 A or 3×560 A 2×1700 A, 3×1700 A or $2 \times 3 \times 560$ A

1/2B2I 1×580A

1/2B2I 1×350A

We commit. We innovate. We partner. We create value.

Never stop thinking